首页> 外文OA文献 >Biophysical model of self-organized spindle formation patterns without centrosomes and kinetochores
【2h】

Biophysical model of self-organized spindle formation patterns without centrosomes and kinetochores

机译:自体纺锤体形成模式的生物物理模型,没有中心体和动子体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Eukaryotic cell division and chromosome segregation depend crucially on the mitotic spindle pattern formation. The usual pathway for spindle production involves microtubule polymerization from two centrosomes. However, experiments using Xenopus extracts with micrometer-sized chromatin-coated beads found, remarkably, that spindle patterns can form in the absence of centrosomes, kinetochores, and duplicated chromosomes. Here we introduce a previously undescribed biophysical model inspired by the heuristic interpretations of the experiments that provides a quantitative explanation and constraints for this type of experiment. The model involves plus-directed (chromokinesin and Eg5) and minus-directed (cytoplasmic dynein oligomers) motors walking on microtubules and the boundary conditions caused by the chromatin-coated spheres. This model combines the effects of the plus-directed cross-linking motor Eg5 and any chromokinesin on the chromatin-covered beads, reflecting current uncertainties in the division of function between the two kinds of motors. The model can nucleate dynamically a variety of self-organized spindle patterns over a wide range of biological parameter values. Our calculations show that spindles will form over a wide range of parameter values. Some parameter values cause a monaster to form instead of a bipolar spindle. Varying the processivity and the dynein microtubule attachment and detachment rates, we find stability parameters for spindle formations. These results not only constrain the possible parameter values, but they point toward the proper division of function between Eg5 and chromokinesin in this spindle formation pathway. The model results suggest experiments that would further enhance our understanding of the basic elements needed for spindle pattern formation in this pathway.
机译:真核细胞分裂和染色体分离关键取决于有丝分裂纺锤体模式的形成。纺锤体生产的通常途径涉及来自两个中心体的微管聚合。但是,使用爪蟾提取物和微米大小的染色质包被的珠子进行的实验发现,值得注意的是,纺锤体模式可以在不存在中心体,动植物和重复的染色体的情况下形成。在这里,我们介绍了以前未描述的生物物理模型,该模型受实验的启发式解释的启发,该模型为此类实验提供了定量的解释和约束。该模型涉及在微管上行走的正向(染色体激动素和Eg5)和负向(胞质达因寡聚体)电机,以及由染色质覆盖的球体引起的边界条件。该模型结合了正向交联电机Eg5和任何染色质激酶对被染色质覆盖的磁珠的影响,反映了两种电机之间功能划分的当前不确定性。该模型可以在广泛的生物学参数值范围内动态成核各种自组织的纺锤体模式。我们的计算表明,主轴将形成各种参数值。一些参数值会导致形成monaster而不是双极主轴。改变生产力和动力蛋白微管的附着和脱离速率,我们找到纺锤形的稳定性参数。这些结果不仅限制了可能的参数值,而且还指向该纺锤体形成途径中Eg5和染色体激酶之间功能的适当划分。模型结果表明实验将进一步增强我们对在该途径中形成纺锤形的基本要素的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号